アグリサイエンティストが行く

農業について思ったことを書いていきます。少しでも農業振興のお役に立てれば。

最近流行りの「スマート農業」って何でしょう?

最近、スマート農業という言葉をよく耳にするようになりました。これは、我々のような農業関係者以外ではそうでもないかもしれませんが、これから先、特に日本のような特殊な環境で農業を持続的なものとしていくために、また世界的に見ればまだまだ増加している人口をこれから先も支え続けていくために必須になってくるかもしれませんので、一般の方にも知っていただきたいと思ったのです。

 

さて、この「スマート農業」という言葉を積極的に推進しているのは農林水産省ですので、そのスマート農業のサイトを見てみることにしましょう。しかし、PDFばっかりで見づらいことこの上ありません(個人的感想です)。なので、定義を簡単に理解するためにも消費者相談(FAQ)のページも見てみましょう。

 

さて、そこでの定義をここにも引用するとします。農林水産省の「『スマート農業の実現に向けた研究会』検討結果の中間取りまとめ」(平成?26?年3月公表)によれば、「ロボット技術やICT等の先端技術を活用し、超省力化や高品質生産等を可能にする新たな農業」ということになります。具体的には次の通りになります。

 

1 超省力・大規模生産を実現

ラクター等の農業機械の自動走行の実現により、規模限界を打破

→トラクター作業を自動化することによって、作業時間自体の短縮だけでなく、空いた時間を利用してその他の作業の効率化を図るということも考えられます。戦後、農業機械の登場などによって生産者の肉体的負担も減り、作業時間等も大幅に短縮されましたが、実現の可能性はともかく、それ以来のおおきな変革を求めていると言えます。

 

2 作物の能力を最大限に発揮

センシング技術や過去のデータを活用したきめ細やかな栽培(精密農業)により、従来にない多収・高品質生産を実現

→従来は生産者の「勘」に頼っていた部分をデータ化し、ICTなどを活用したセンサー、カメラ画像のAIによる診断などを通して収穫時期や病害虫の発生予測を行うものです。収穫適期や防除のタイミングを逃すことなく、また特に加工用などで業者との取引がある場合、正確な収穫予測でそれらの契約を有利に進めることができるようにしたい、というものです。

 

3 きつい作業、危険な作業から解放

収穫物の積み下ろし等重労働をアシストスーツにより軽労化、負担の大きな畦畔等の除草作業を自動化

→地面に置いた重量野菜などのコンテナをアシストスーツなどで身体への負担を少なく持ち上げ、持ち運びができるようになります。コンピューター制御によるモーター駆動の高度なものから、ばねの力でひじなどを支え、長時間作業姿勢を保つ場合に、負担を軽減する簡易なものまで研究されています。

 

4 誰もが取り組みやすい農業を実現

農機の運転アシスト装置、栽培ノウハウのデータ化等により、経験の少ない労働力でも対処可能な環境を実現

→果樹や果菜類などの整枝、剪定作業など残す枝、切る枝の選定などは経験を積まないと難しいものですが、高度にデータ化しマニュアル化することで、初心者でも成果を上げやすくするものです。

 

5 消費者・実需者に安心と信頼を提供

生産情報のクラウドシステムによる提供等により、産地と消費者・実需者を直結

→2のところでも触れましたが、生産、収穫予測や栽培の様子などをクラウドシステムによって消費者・実需者でもアクセスできるようにすることで、相互の信頼感を醸成します。

 

「スマート農業」というとすぐICTに結び付けがちです。もちろんICTがその大きな根幹をなすことは間違いありません。しかし、問題点を整理し、従来技術の枠組みの中で細かい工夫などを積み重ねて効率化を図っていく(この辺りGAPにもつながる部分かと思います)のも「スマート農業」だと思っています。

 

以上、「理想的な話」ばかり紹介しました。それほど簡単に話が進むとは思えませんが、農業が職業として魅力を失っている(ように多くの人には見える)現状では、農業の世界もその姿を変えていく必要はあると思います。もちろんすべての農業者がこっちの方向を向く必要はないと思いますし、現行?農業にもまだまだ魅力を生み出す余地はあると思っています。

植物のワクチン接種による免疫獲得とは?

植物のワクチン接種による免疫獲得について、ツイッターで自分の記憶で語ったことにちょっとした(ちょっとではないかも)誤謬があり、相互フォローのBernardo Domorno(@Dominique_Domon)さんに間違いをご指摘いただいたのでいろいろ調べてみました。そこで、それらをできるだけわかりやすく解説してみたいと思います。ただ、分子生物学については、それを利用することもある立場にありながら、専門的には勉強していなかったため、簡略化した説明に間違いがないか自信がありません。そのあたり、専門家からのツッコミがあると嬉しいです。

昨年末、ツイッターで流れてきた「赤ちゃんレベルの「ゲノム編集」の入門の話」というみねそうさんのnoteを読んで、以前何かのセミナーで聞いた植物のワクチンによる免疫の獲得とメカニズムが似ているのではないかと思い、そのようなことをツイッターでつぶやいたところ、冒頭でも話したように相互フォローのBernardo Domornoさんから「植物のは弱毒ウイルスなので、違うと思う」旨のツッコミをいただきました。そこで、自分の記憶に間違いがあった可能性もあるし、間違ってはいなくても全然違うものである可能性もあるので、この際自分の知識をアップデートするためにもそれらを調べてみることにしました。

そこで、それらについて何かネット上に良い資料がないかと調べていたところ、たまたま自分が受講したセミナーのスライドが流れているのを発見しました。

宇都宮大学農学部生物資源科学科 夏秋知英

その時にこの演目で聞いた話を「植物が自分のRNAを分解して再利用する機能を活用して、ウイルスのRNAを分解してウイルス病から防御するが、一度感染したウイルスに対しては効率よく分解できるようになるため、感染しにくくなる」と理解していたわけです。
で、このスライドを読み返してみて、自分の理解が間違っていないかどうかを確認してみると、「最初から最後まで間違っているわけではないが、説明全体としては正しいとは言えない」という感じでした(苦笑)

さて、そのあたりの防御機構を簡単に解説できればと思っていましたが、冒頭でも言った通り分子生物学は苦手分野で、主要な用語がなかなか理解できません。余裕があればそのうち適切な教科書を入手して勉強したいと思いますが、とりあえず今回の記事ではインターネットの力を借りようかと思います。

ということで、植物ウイルスワクチンに重要な役割を果たすサイレンシングの補足説明については以下のサイトを参考にしました。

東京大学 大学院農学生命科学研究科 生産・環境生物学専攻 植物病理学研究室
さて、それでは先ほどの夏秋先生のスライドの内容を中心に解説を試みたいと思います。まず、植物ウイルスワクチンの効果というのは、はっきりわかっているものは大きく分ければ2通りあるようです。

まず一つはウイルスには外被タンパク質というものがあり、そこからの脱外被を阻害して遺伝子の翻訳に進めなくするというものがあります。病原性の弱い弱毒ウイルスを接種することでこれを起こりやすくしておき、問題になる強毒のウイルスに感染した時にその増殖を抑制するというものです。これは自分には比較的理解しやすいものでしたし、早くから仮説として唱えられてきたようですが、外被が欠損したウイルスやそもそも外被を持たないウイロイドでもそれらの弱毒株などとの緩衝効果が見られることから、それだけでは説明がつきません。

というわけで、上記以外のもう一つは(といっても細かく分けると一つとは言えないかもですが) RNA介在性干渉効果というもので、ウイルスが主に遺伝子としているRNAの遺伝子型の発現を抑制するというものです。植物がもともと持っていて、遺伝子型の発現などにも関わるRNAサイレンシングという機構を利用しています。真核生物には広く細胞内に保存されているsmallRNAを使って、相同する配列を持つmRNAに結合させて、タンパク質合成を阻害したりすることで病害性ウイルスの遺伝子発現を抑制します。弱毒ウイルスの接種によってウイルスの遺伝子型を認識し、このsmallRNAが多数生み出されて同様の遺伝子型を持つ強毒ウイルスが感染したとしても、その増殖を抑制するわけです。

ここのところ、スライドには書いていない部分で中途半端に話を聞いていて、私は間違った理解をしていたわけですね…。

さて、では弱毒ウイルスは強毒ウイルスと同様に植物に感染して増殖しますが、なぜ病原性がないか、低いのでしょうか。実用化されている植物ウイルスワクチンのうち、CMV(キュウリモザイクウイルス)については2つのタイプがあります。

強毒ウイルスは、先ほど解説したサイレンシングに対抗するためそれを抑制するサプレッサーというタンパク質を持っています。ただ、このサプレッサーのサイレンシング抑制の作用機構はウイルスごとに異なっているらしく、詳細なメカニズムが解明されているものは少ないようです。CMVの植物ウイルスワクチンのうち一つは、強毒ウイルスが持っているこのサプレッサーが壊れているものと考えられています。このため、サイレンシングが有効に働き、ワクチン接種済の植物については後から来た強毒ウイルスに対してもサイレンシングの効果が発揮できるのでしょう。

もう一つはCMVに寄生するサテライトRNA(ウイルスに寄生するRNAがあるなんてビックリですね)によって病徴が抑制されているウイルスを利用したものです。これによって病徴を出さずにサイレンシングを誘導し、その後に強毒ウイルスが感染しても増殖しづらいとなるようです。

と、このように遺伝子発現の抑制をなぜかRNAの分解、と理解して覚えていたようです。資料にない部分を耳から聞いただけで覚えていたのでは危ういもんですね。反省して、もっと精進したいと思います…。

それから、きちんと調べたつもりですが、このエントリー中身に全く自信がありません。ほんまもんの専門家からどういうツッコミがくるか、ビクビクしています。

Twitterで話題になった農薬を洗い落とせる水について

以前、Twitterで問題になっていたベジシャワーという商品について、いろいろ思うことがあったのでTwitterで連続tweetしました。で、埋もれてしまうのもアレなのでまとめてエントリーを起こしたのです。


さて、きっかけになったtweetは次のものです。
https://twitter.com/y_psychologist/status/1057801124151869440


問題点は以前に解説しているこの記事が参考になると思うのでご紹介。

以前から繰り返し言っていますが、この商品がどういう性質のものであれ、これほど目に見える形で農薬が残留しているということは考えられません。農薬と一口に言ってもさまざまな種類があり、たった一種類の薬品?で抽出可能なわけはないのです。



自分自身は残留分析の担当をしたことはありませんが、肥料の化学分析は専門でやっていたことがあるので、成分ごとに分析できる形(多くは液体)にするための抽出や分解などの前処理については、その大変さはよく理解できているつもりです。



先ほど紹介したブログ記事にもあったように、トマトをアルカリなどで洗えば、リコピンかカロチンが溶け出してくると思われるので、おそらくその色ですよね。そうでないというなら、慣行栽培のトマトと無農薬で栽培したトマトの両方を洗ってその色を比べてみる必要があると思います。



また、トマト類は汁液が付き易い植物で、茎や葉などを触ったあと石鹸で手を洗うと黄色っぽい緑色の泡が立ちます。トマト果実の表面にはこの汁液がたくさん付着しており、水などで洗うことで、この汁液の色が目立っている可能性も十分考えられます。



なので、トマトの表面に問題があるほど農薬が残留し、あの商品によって農薬が除去できていると主張するなら、洗浄した液体を農薬分析にかけて、そのデータを公開するべきです。もちろん、一般に流通しているものをランダムに抽出してサンプルとしなければなりません。



このようなことから、あの商品説明は不誠実であると言わざるを得ないと思います。



さて、ミニトマトの農薬散布回数について、49回という数値に妥当性は本当にないのでしょうか。結論から言うと、あの言い方はかなりの誤解を誘導するものであり、わざと慣行栽培のトマトを貶める意図があると思われても仕方がないものだと言えますが、数値そのものは全く根拠がない、とまでは言えないと思います。



あの書き方だと、説明不足にもほどがあります。収穫されたミニトマト自体が結実から収穫までに49回も農薬が掛かっているかのようです。通常、開花から結実までは季節によって違うものの、最も長い時期でも45日くらいですから、それだと毎日、たまには日に二回農薬を散布しなければなりません。



tweetを引用した方は5月植で7?9月に収穫するとおっしゃっています。それは全く正しいのですが、ミニトマトにはいろいろな作型があり、それだけではありません。Tweet主のおっしゃっているのはおそらく雨よけ夏秋栽培という作型かと思われます。



一般に流通しているミニトマトは、少なくとも西日本で多い作型は促成長期栽培と言って、8月中下旬に定植して10月ごろから収穫が始まり、6月くらいまで獲り続けるというものです。その作型になると、病害虫の発生が多い年の場合、農薬の散布回数はかなり多くなると言えます。



ここで、先に農薬の散布回数について、49回という数値の根拠について定義を考えてみます。日本には減農薬・減化学肥料栽培という用語の濫用を防ぐため、「特別栽培農産物の表示に係るガイドライン」というものがあります。



詳細な説明はここでは省きますが、農薬の使用回数を半分かどうか判断するために、それをカウントする際、実際に農薬を散布した作業回数ではなく、農薬の成分の数でカウントするというややこしいことをしています。



例えば、農薬散布の作業回数を減らすために、農家さんは殺虫剤と殺菌剤を混用するということをよくやります。この場合、殺虫剤が1、殺菌剤が1で合計2回農薬を使用したとカウントされます。



なので、先ほどのミニトマト促成長期栽培の場合、9?6月の10か月という長期間にわたる栽培になるので、月に2回農薬を散布したとして実際の作業回数は2×10で20回ということになります。



そこに、それぞれ殺虫剤と殺菌剤を混用して農薬を散布した場合、特別栽培ガイドラインの定義では20×2で40回もの農薬使用回数ということになります。そこへ、種子消毒や苗育成中の農薬を加えると49回というのはあり得ない数字ではないということになります。



特別栽培などについては、各都道府県が地域慣行栽培の農薬使用回数というのを公表している場合があります。これは、地域によって病害虫の発生状況が違うため、農薬の使用回数も違いがあり、全国で統一すると減農薬のやりやすさに地域格差ができるため、そのように設定しているものです。



そこで、先ほどの定義に戻って各都道府県が公表している農薬の使用回数を調べれば、ミニトマトの促成長期栽培の慣行において、49回としているところが出てくる可能性は十分にあるわけです。この数字はもし根拠があるとすればそこを参照した可能性が高いのではないかと思っています。
※注
とあるフォロワーさんが教えてくださいましたが、どうやら群馬県の特別栽培認証基準で、ミニトマトの慣行栽培において農薬の使用回数が49回となっているようです。
http://www.pref.gunma.jp/06/f0910002.html


とはいえ、先ほども述べたようにトマトの果実だけに絞って考えれば開花から収穫までの農薬散布回数は2?4回程度、成分の数を考慮してもその2倍程度までと言えるでしょう。しかも、ふつうは同じ農薬を続けて使うことはありません。使用回数の制限や抵抗性の回避を考慮するからです。



また、農薬の使用に関しては、人間の健康に影響がないよう、個別にその濃度や使用回数に関して厳しく制限されています。どの農薬も、普通に使われている限り収穫時に基準値を超えるような残留は起こりません。



これらのことから、かりに49回使用されていようとよほどのことがなければ、普通に流通しているミニトマトで水で洗ったくらいで目に見えるほどの農薬が抽出されるなどありえないのです。その数字のインパクトだけを強調して、農薬のものかどうかわからない「色」で脅すのはやり方が間違ってます。

厄介な植物のウイルス病 ?アザミウマが媒介するトスポウイルスとは?

植物病害のうち、糸状菌や細菌の場合、胞子の飛散や土壌、水媒伝染などにより病気が拡散しますが、ウイルスは基本的には生体内でしか増殖、生存できませんのでそういった伝染形式はほとんどありません。直接の接触や剪定鋏での作業などによる汁液感染、害虫のアブラムシやアザミウマ、コナジラミなどを通じた虫媒伝染、挿木や接ぎ木、花粉や種子などの生体内に残存しての世代間伝染などになります。

そこで、対策ですが同じほ場内部での汁液感染については、作業する上において発病株の早期発見と剪定用の鋏などを随時消毒や交換しながら使うなどの工夫をすることがポイントになります。世代間伝染ではいわゆるウイルスフリー株を使う、またはそれらを使って生産された無病の挿し穂や苗を使うことが対策となるでしょう。

厄介なのが虫媒伝染です。最近メロンやキュウリで猛威を振るっているメロン黄化えそウイルス(MYSV)はミナミキイロアザミウマが、トマトに甚大な被害をもたらすトマト黄化葉巻ウイルス(TYLCV)はタバココナジラミ(シルバーリーフコナジラミ含む)が媒介します。

TYLCVについては、最近になって耐病性品種が多数開発され、比較的容易に、また品質も従来品種と変わらず生産できるようになってきています。もちろん耐病性品種といっても、まったく発病しないわけではないので、従来通りの防除は必要です。

露地栽培では侵入防止対策が極めて難しく、施設栽培でもネットの展張などの侵入防止対策をしても、100%の侵入防止はほぼ不可能であると言えます。アザミウマなどの微小害虫が通過不可能なネットだと換気効率が極端に落ちるため現実的ではありませんし、たとえそういうネットなどを使用したとしても作業者の出入りなどの際に侵入があったり、気を付けているつもりでもビニールハウスなどではどこかに隙間はできるものです。

ですが、完ぺきではなくても例えば0.6mm目合いのネットではアザミウマなら侵入率を30%程度までには下げられますし、光線を拡散する資材(白いタイベックシートなど)をほ場周辺に使うことでアザミウマやアブラムシなどの視覚をかく乱して飛翔を妨害し、侵入しにくくすることはできます。

また、それでも不幸にして黄化えそ病などの致命的なウイルス病が発生してしまった場合、発病株の抜き取りと適切な処分(ビニール袋に入れて廃棄、土中への埋設、焼却など)を行い、同時に保毒虫の撲滅を目的とした薬剤による防除が必要になります。

さて、虫媒(主にアザミウマ)伝染によるウイルス病の防除対策についてお話しして来ましたが、メロン黄化えそウイルスなどトスポウイルスの場合、アザミウマが一度ウイルスを含む汁液を吸っただけで生涯にわたって感染能力を持ち続けるのですが、それはなぜでしょうか?

実は、トスポウイルスは、種としては動物ウイルスBunyaviridac科の仲間に含まれ、その中でもMYSVなどはアザミウマの体内で増殖が可能なのです。主に1例幼虫の時に保毒植物から吸汁してウイルスを獲得し、その後アザミウマの体内を移動し、唾液腺に到達してそこで増殖しながら植物への感染機会を待つ、という戦略をとるわけです。また、それらのウイルスはアザミウマの行動も制御し、感染植物には雌成虫が集まりやすく、強い産卵選好性もあるという報告もあります。元になる文献が確認できていませんが、トスポウイルスは元々アザミウマなどに感染するウイルスが変異したものではないかという説もあるようです。

それにしても、元々アザミウマのウイルスだったのならアザミウマとの共同で植物を冒すのではなく、アザミウマの方を脅かしてほしいものですね。

参考サイト:
『むしコラ』 虫媒性ウイルスの巧妙な手口

ニンニク(暖地系)分球の条件とは ?スポンジ球って何だ?

ずいぶん久しぶりになってしまいましたが、これからまたちょくちょく書いていきたいと思っていますので、よろしくお願いします。今回から、ちょっと文体を変えていきたいと思います。

関係ないですが、某コーヒー本の書評を書きたいとずっと思っていますが、なんせ世界の地理や歴史に対する知識があまりに浅く、理解が深められないのでまともな書評が書けていません…自分の教養の浅さにうんざりするこの頃です。

私が暮らしている地域は西日本ではニンニク栽培が盛んな地域で、日本一のニンニク産地、青森県の出荷が少なくなってくる春先に早出しをする栽培体系で、収益をあげています。ニンニクを収益の柱としている生産者も多く、ニンニクの品質、収量や単価によって生活が大きく影響を受ける人も少なくありません。

さて、昨年産(植え付けは一昨年)のニンニク栽培ですが、(ここのところ毎年のように)台風などの影響もあってほ場準備が遅れました。その後は暖冬の影響もあって生育自体は順調だったのですが、こちらではスポンジ球と呼んでいる分球しない株が大量に発生し、生産者の収量・収益が大幅に圧縮されてしまいました。

ニンニクは、中心にある生長点が花芽となることで、側球と呼ばれる新しい鱗片が形成され、そこが肥大して店舗で販売されているようなニンニクになります。タマネギと違って、小さい鱗片が寒冷地系品種(ホワイト6片など)ではおよそ6片、暖地系品種(上海早生など)では7?8片が中心の軸(花茎)を取り囲むようについています。この、側球が形成されず、タマネギのように一つの球となり、肥大も悪いものをスポンジ球と言います。

ニンニクが分球する条件は、低温、長日と言われています。日本では、季節的に低温であれば短日になるのが必須ですし、分球の長日条件は20時間と言われていますので、日本にはそこまでの長日になる地域は存在しませんから、必然的に低温が必須となります。

つまり、昨年産のニンニクでスポンジ球が大量発生したのは低温に遭遇する期間が不足していた、というのが最大の原因であろうかと思われます。施肥とか植え付けとかが大きく影響しているならほ場や生産者によってもっと差がついてもいいと思われますが、栽培条件とスポンジ球発生率の調査状況を見てみてもはっきりした相関は見られませんでした。

もう一つ自分が原因として疑っているのは、分球し始めるのは1月くらいかと思いますが、昨年は植え付け時期や気候などから花芽分化が遅れ、花芽分化が始まるのと夜温が上がり、雨が多くる時期が被ったのではないか。そのせいで花芽分化時期に残留していた肥料が効き始め、花芽分化が抑制されたのではないかということです。一般的に花芽分化は窒素の肥効と負の相関があるためです。乱暴に言うと、窒素がよく効いていると花芽はできにくくなるということです。

さて、それらを踏まえて今年あるいはそれ以降はどうしたらいいのでしょうか。

まず、その年の気候がどうなるかは長期予報などである程度予想できるとはいえ、正確には読めませんのでとりあえず作業時期は植え付けから土寄せ、マルチ掛けも例年通りの適期に行うこと。早すぎる作業はスポンジ球のリスクを高めるのではないかと思います。また、施肥量、追肥の時期も適切に。先ほど述べたような理由から、多すぎる施肥は花芽分化を抑制する可能性が高いからです。また、多肥栽培は病気のリスクも増加させます。種球の大きさも大きすぎないように。大きい種球は大玉を収穫しやすくはなりますが、これもスポンジ球のリスクにつながります。種球を割った後、大きい種球は日当たりが悪いなど条件の良くないところに植えるなど工夫しましょう。

ただ、今年の状況からすれば1?2月の寒さが異常なくらい厳しかったため、スポンジ球の発生率は低いものと思われます。一点だけ心配があるとすれば、昨年秋も台風など非常に雨が多く、ほ場準備の遅れから植え付けも遅れに遅れ、生育が良くない状態で厳寒期に突入してしまったことです。それが低温感受性にどのように影響してくるかもう一つ読めないと思っています。

それから、3月に入ってからは急激に気温が上昇し、そこからの地上部の生育が順調すぎるところも気になります。残留していた肥料の効き具合もはっきりしませんし、これだけ生育が急だと病気の発生は多くなりますし、2次生長(分球した新しい鱗片から発芽が起きてしまい、品質が低下すること)も心配です。

さて、ここから先、今年の雨や気温はどうなるんでしょうか。すべてのニンニク生産者の方が良品を収穫し、気候だけでなく懐も温かくなってくれることを祈りるばかりです。

岡本信一さんの「土づくり」とは

農業コンサルタントの岡本さんのブログをひさしぶりにのぞいたところ、土づくりについて一気に更新されていた。もともとの私の専門分野について言及されており、おおむね首肯できる部分が多いが、多少疑問点もなくはないのでご紹介とともに言及しておきたい。

今回、取り上げたいのは一つの記事には収まっていない。
この後、岡本さんのブログには少し続きが書かれているが、とりあえずはこの6つについてである。そして、わけて論じるのは難しいので、まとめてしまうことをお許しいただきたい。

まず思ったのはこの記事群は我々のような農業技術者ではなく、一般的な農家に向けて書かれているのだろうなということだ。なので、それを踏まえての話ということになる。

また、嫌味キャラみたいなつまらないツッコミもしておくと植物に対して使う場合「成長」ではなく「生長」を使う。本文中でも両方出てくる場合があるので、混同されているのなら修正いただきたいところだ。もしかしたら、何か狙いがあってわざとされているのかもしれないが。
さて、土壌硬度に意識を払っていなかったほ場について、それをコントロールするようになれば、確かに土壌硬度は生育に大きな影響を与えると思う。岡本さんも記事中で触れられているように、単純に土壌への貫入抵抗が根の張りやすさに一番大きな影響を与えているからである。そして、一般的に根圏の大きさと地上部の大きさには相関があると考えられており、根が大きく張るということは地上部もそれだけ大きくなり、葉菜類などは一番直接的に葉の量が増える分収穫が増えるし、ナスやトマト、キュウリなどの果菜類も大きな着果負担に耐える体力が付き、それだけ果実をたくさん成らせることができるからである。また、葉の量が増えるということは単純計算では光合成量が増え(実際はそんなに単純ではないが)、収穫物の糖度が増すということになる。

また、ここからは推測が入るのだが、貫入抵抗が大きければ根の組織もそれだけ密度の高い丈夫なものを作る必要があるため、よけいにエネルギーを消費することもあるのではないか。新たな組織形成の際、硝酸イオンやアンモニウムイオンからアミノ酸を経てたんぱく質を合成する際に糖分が必要になるからである。そうすると、地上部の糖度が下がることになり、食味のうち少なくとも甘味については下がる、ということが言える。

で、ここだけ見ると根は張れば張るほどいい、みたいに思えるかもしれない。しかし、岡本さんも触れているようにどのような品目をどういう目的で作るかによってそのあたりのやりようは変わってくる。まず一つは、品目によって有効な作土層の深さが違うことである。例えばイチゴなどでは高設の養液栽培が増えてきているが、そのうちの一つであるピートバッグ式などでは30×85cmのシルバーポリでできた袋に16?の培地を詰め、1袋当たり8株を植えるのだが、たったそれだけの根域で十分に育ち、10a当たり4tのイチゴが収穫できる。もちろん培地は根が理想的に張ることのできる物理性をはじめから作ってあり、1シーズンの栽培には十分その物理性を保つように作られている。つまり、土耕栽培でも同様の物理性を実現し、同程度の根域を確保し、適切な水分、肥培管理ができれば同等以上の収穫が得られるということである。
これがアスパラガスになると地上部の高さは1.5?1.8mに及び、根域の深さは最低でも80?100cmの確保が必要になる。イチゴとアスパラガスでは生育に必要な生理生態が違うため、土づくりの考え方も大幅に違ってくるので、目的と投入する労力によってやりようは考えなければならない。
そのほか、地下水位など考慮しなければならない土地も出てくるかと思うが、話が分散しすぎるのでここでは取り上げない。

さて、岡本さんのブログ本文にも出てきたが、土壌物理性を測る指標として「三相分布」という言葉がある。「固相・気相・液相」の三相のことで、一般的に理想的な比率は固相:気相:液相=4:3:3と言われている。しかし、これらと土壌硬度の関係は画一的ではなく、土質によって変わってくる。砂質土か、粘質土か、火山灰土かなどである。根の貫入抵抗は土壌硬度と高い相関があるとは思うが、通気性、排水性に関してはこの三相分布の影響が大きく、水が入れ替わること(潅水→乾燥または地下への流亡)によって空気も入れ替わり、新鮮な空気が根に供給されるため根の活性向上にはこの三相分布、つまり土壌孔隙が重要になってくるものと思われる。なので、土壌硬度は非常に重要な指標になるとは思うが、各地の土質ごとに適用が変わってくるのではないかと思われるのである。

また、根域の土壌物理性が理想になったとして、それを栽培シーズンを通して保っていくことができるのか、ということも考えねばならない。定植時には理想的だったものが、降雨によって孔隙が埋まり、三相のうち固相が優勢になって土壌硬度が増してしまえば元も子もない。有機物やその他土壌改良資材の投入はそれらを防ぐためもある。そのあたり、一発での土壌改良には非常に興味はあるが、そこをどのように解決したのかが疑問のある点である。なので、そのためには岡本さんの研究会に参加するのが一番の近道であるが、今のところ参加のめどが立っていないので、また検討したい。

ともあれ、土づくりは単純な有機物投入ではないという部分には賛意を示したい。その上で、自分も土づくりには物理性の改善も重要であるということは訴え続けてきたつもりだが、新しい考え方と(おそらく)コロンブスの卵的な新技術での土壌改良を岡本さんの立場から示されてしまったことには我々のような農業技術者は危機感を覚えなければならないのではないだろうか。

窒素固定菌(根粒菌)とはなにか

さて、先日Twitter根粒菌の話題が出ていたので、それに絡めて植物栄養で窒素の話、特に根粒菌というか窒素固定菌について取り上げてみよう。
窒素関連の話題については「有機物施用とアミノ酸吸収について」や「有機栽培と大規模農業経営は対立する概念? ?有機栽培での窒素供給について?」、「化学肥料、何が問題なのか」などで取り上げてきた。植物栄養の窒素としては十分に取り上げてきたと思うので、ご参照いただきたい。
窒素は地球上に豊富に存在し、大気のおよそ80%を占めている。しかし、それはN2という窒素分子の状態であり、非常に安定している。このため、生物の必須元素でありながらほとんどの動植物は大気中の窒素を直接利用できない。自力では有機物として循環している窒素しか利用できないのである。そこで、大気中の窒素を固定し、主に植物が利用できる形態にできる微生物がおり、それと共生するなどして取り込んでいる。それらの菌を総称して窒素固定菌という。それでは、菌の種類(大きなくくりです)ごとに解説してみよう。

1 根粒菌
グラム陰性の桿菌で、主にマメ科植物の根に寄生して空気中の窒素を還元してアンモニア態窒素に変え、宿主に供給する。鞭毛をもち運動性を有するが、宿主に寄生するとこん棒状などのバクテロイドとなり、宿主から光合成産物を受け取って、これを利用してアンモニア態窒素を供給するという共生関係にある。宿主の植物種に対する特異性から8種類に分類されている。窒素固定菌の中では最も効率がよく、9kg/10a以上の生産能力がある。
このようなことから、マメ科植物は窒素肥料を施用しなくても育つ。営利栽培の大豆などでも他の野菜類に比べると窒素施用量は少ない。また、このような性質を利用してマメ科植物を緑肥作物とすることも多い。秋?春にかけてレンゲソウ(紫雲英・ゲンゲ)を水稲の裏作に作付し、春先にすき込むことで空気中の窒素を取り込み、基肥の代替とすることも行われている。

2 フランキア
アクチノリザル植物(ブナ科やバラ科、ウリ科などの一部)という植物群と共生する窒素固定菌であり、真正細菌の一属で放線菌。放線菌は細菌でありながら多細胞で、菌糸や胞子を形成し、見た目は糸状菌(カビ)のようである。ベクシルという細胞を形成し、そこで窒素固定を行う。

3 アゾトバクター
非共生的に窒素固定を行う細菌。好気的環境において単独で窒素固定を行い、酸素がないと生存できない。窒素固定だけでなく植物ホルモンの産生も行い、土壌に接種することでムギなどの増収効果があることが知られている。作物根圏に定着させる条件は明らかになっていない。

4 ラン藻類
藻類の一種ではなく、細菌と考えられ、近年は藍色細菌と呼ばれている。ラン藻類には窒素固定能を持つものも多く、アカウキクサなどと共生している種類もある。

5 その他
嫌気性菌のクロストロリジウム、光合成細菌の一部、メタン菌の一部、硫酸還元菌の一部などが窒素固定を行う。

6 番外
窒素固定ではないが、植物の根と共生する菌根菌というものもある。様々な高等植物の根と共生し、難溶性のリン酸を可溶化することで植物に供給する。糸状菌で、内部に着生するものと外部に着生するものがある。

以上、窒素固定菌について解説してきたが、菌の種名、分類についてはよくわかっていないので、そのあたりのツッコミはご遠慮願います(苦笑)